Трагедия Свободы  Умопримечания | Стихи | Библиотека 
  на первую страницу НОВОСТИ | ССЫЛКИ   
Ал-Хорезми Мухаммед бен-Муса (783-850)
  
Стихи



  
Ал-ХОРЕЗМИ Мухаммед бен-Муса (783-850)

Я составил краткую книгу об исчислении
алгебры и алмукабалы, заключающую в себе
простые и сложные вопросы арифметики,
ибо это необходимо людям

Ал-Хорезми


Что же скрывается под этим именем? Имя ал-Хорезми указывает на его родину-среднеазиатское государство Хорезм (ныне территория Узбекистана), бен Муса - значит сын Мусы, а одно из прозвищ ученого - ал-Маджуси - говорит о его происхождении из рода магов (по-арабски маджусь). Это показывает также, что одним из источников знаний Мухаммеда ал-Хорезми была наука доисламской Средней Азии, хранителями которой были маги. Сведений о жизни и деятельности ал-Хорезми, к сожалению, почти не сохранилось. Известно лишь, что он возглавлял в Багдаде библиотеку Дома мудрости, своего рода Багдадской академии, при халифе ал-Мамуне. А при другом халифе ал-Васике, преемнике ал-Мамуна, он возглавлял экспедицию к хазарам. Но остались арифметический трактат Книга об индийском счете, алгебраический трактат Краткая книга об исчислении аль-джебры и алмукабалы, астрономические таблицы и географический трактат. Оба математических трактата были переведены на латинский язык средневековой Европы и служили долгое время основными учебниками по математике. Имя ал-Хорезми в видоизмененной форме Algorithmus превратилось в нарицательное слово алгоритм и сначала означало всю систему десятичной позиционной арифметики. Впоследствии этот термин приобрел более широкий смысл в математике как правило выполнения операций в определенном порядке. Вспомним, к примеру, алгоритм Евклида или алгоритм решения квадратного уравнения. Слова аль-джебр и алмукабала, стоящие в заглавии алгебраического трактата, означали две простейшие алгебраические операции при решении уравнений. От слова аль-джебр произошел термин алгебра. Если привести запись при помощи современной символики, то эти два действия можно пояснить на следующем примере. Пусть дано уравнение 6х-13= 5х-8. Прибавив к обеим частям по 13 и 8, совершим действие аль-джебр. Получим 6х+ 8 = 5х+ 13. Отнимая от обеих частей по 5х и по 8, совершим действие алмукабала и в результате получим х=5. Таким образом, действия аль-джебр и алмукабала заменили собой применяющийся ныне перенос членов уравнения из одной части уравнения в другую и приведение подобных членов. Эти две операции позволили ал-Хорезми приводить всякое алгебраическое уравнение первой и второй степени к каноническим формам, которых у ал-Хорезми шесть: bx=c, ax2=с, ax2=bx, ax2+bx=c, ax2+c=bx, ax2=bx+c. Все эти уравнения записывались им словестно, коэффициенты a,b и c рассматривались только положительными. Понятно, что решение этих уравнений ал-Хорезми выражал в виде словестных правил. Но если их перевести на наш современный математический язык, то получим формулы, по которым можно найти корни уравнений. В отличие от греков, которые, разумеется, тоже решали квадратные уравнения, но решали чисто геометрическим путам, ал-Хорезми чертежом пользуется лишь для пояснения справедливости своего риторического решения. Он может решить любое квадратное уравнение по его общему правилу (найти положительные корни). Если у греков было именно геометрическое решение, то метод ал-Хорезми-почти алгебраический. И это колоссальный шаг вперед по сравнению с геометрической алгеброй греков; от него остается один шаг (правда, длиной в добрых семь с лишним веков) к алгебре символической, алгебре Виета-Ньютона. В своем арифметическом трактате ал-Хорезми в основном следовал индийским образцам, и именно через него европейцы познакомились с индийскими методами записи чисел, то есть с употреблением нуля и с поместным значением цифр. Алгебраический же трактат отличался от работ как индийских математиков, так и греческих. Можно полагать, что в этой книге ал-Хорезми следовал местным традициям и собственным результатам. Если большинство греков не видело необходимости в приложении научных знаний к практическим потребностям, то главным желанием ал-Хорезми было поставить науку на службу человечеству, приспособить ее к практическим целям. Алгебра ал-Хорезми имеет раздел о торговле и торговых сделках, с задачами на тройное Правило
Из книги В.К. Смышляева - О математике и математиках
http://www.univer.omsk.su/omsk/Edu/Math/hhorezmi.htm
http://mathc.chat.ru/gm/g_math5.htm
  
СТАТИСТИКА

  Веб-дизайн © Kirsoft KSNews™, 2001 Copyright © Трагедия Свободы, 2001-2004